Abstract

We calculate the neutrino self-energy operator Sigma (p) in the presence of a magnetic field B. In particular, we consider the weak-field limit e B << m_\ell^2, where m_\ell is the charged-lepton mass corresponding to the neutrino flavor \nu_\ell, and we consider a "moderate field" m_\ell^2 << e B << m_W^2. Our results differ substantially from the previous literature. For a moderate field, we show that it is crucial to include the contributions from all Landau levels of the intermediate charged lepton, not just the ground-state. For the conditions of the early universe where the background medium consists of a charge-symmetric plasma, the pure B-field contribution to the neutrino dispersion relation is proportional to (e B)^2 and thus comparable to the contribution of the magnetized plasma.Comment: 9 pages, 1 figure, revtex. Version to appear in Phys. Rev. D (presentation improved, reference list revised, numerical error in Eq.(41) corrected, conclusions unchanged

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/02/2019