research

Time-Series Analysis of Super-Kamiokande Measurements of the Solar Neutrino Flux

Abstract

The Super-Kamiokande Consortium has recently released data suitable for time-series analysis. The binning is highly regular: the power spectrum of the acquisition times has a huge peak (power S > 120) at the frequency (in cycles per year) 35.98 (period 10.15 days), where power measurements are such that the probability of obtaining a peak of strength S or more by chance at a specified frequency is exp(-S). This inevitably leads to severe aliasing of the power spectrum. The strongest peak in the range 0 - 100 in a power spectrum formed by a likelihood procedure is at 26.57 (period 13.75 days) with S = 11.26. For the range 0 - 40, the second-strongest peak is at 9.42 (period 38.82 days) with S = 7.3. Since 26.57 + 9.42 = 35.99, we conclude that the weaker peak at 9.42 is an alias of the stronger peak at 26.57. We note that 26.57 falls in the band 26.36 - 27.66, formed from twice the range of synodic rotation frequencies of an equatorial section of the Sun for normalized radius larger than 0.1. Oscillations at twice the rotation frequency, attributable to "m = 2" structures, are not uncommon in solar data. We find from the shuffle test that the probability of obtaining a peak of S = 11.26 or more by chance in this band is 0.1 %. This new result therefore supports at the 99.9% confidence level previous evidence, found in Homestake and GALLEX-GNO data, for rotational modulation of the solar neutrino flux. The frequency 25.57 points to a source of modulation at or near the tachocline.Comment: 15 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019