The efficient and fair allocation of limited resources is a classical problem
in economics and computer science. In kidney exchanges, a central market maker
allocates living kidney donors to patients in need of an organ. Patients and
donors in kidney exchanges are prioritized using ad-hoc weights decided on by
committee and then fed into an allocation algorithm that determines who gets
what--and who does not. In this paper, we provide an end-to-end methodology for
estimating weights of individual participant profiles in a kidney exchange. We
first elicit from human subjects a list of patient attributes they consider
acceptable for the purpose of prioritizing patients (e.g., medical
characteristics, lifestyle choices, and so on). Then, we ask subjects
comparison queries between patient profiles and estimate weights in a
principled way from their responses. We show how to use these weights in kidney
exchange market clearing algorithms. We then evaluate the impact of the weights
in simulations and find that the precise numerical values of the weights we
computed matter little, other than the ordering of profiles that they imply.
However, compared to not prioritizing patients at all, there is a significant
effect, with certain classes of patients being (de)prioritized based on the
human-elicited value judgments