research

Phase transition dynamics in the hot Abelian Higgs model

Abstract

We present a detailed numerical study of the equilibrium and non-equilibrium dynamics of the phase transition in the finite-temperature Abelian Higgs model. Our simulations use classical equations of motion both with and without hard-thermal-loop corrections, which take into account the leading quantum effects. From the equilibrium real-time correlators, we determine the Landau damping rate, the plasmon frequency and the plasmon damping rate. We also find that, close to the phase transition, the static magnetic field correlator shows power-law magnetic screening at long distances. The information about the damping rates allows us to derive a quantitative prediction for the number density of topological defects formed in a phase transition. We test this prediction in a non-equilibrium simulation and show that the relevant time scale for defect formation is given by the Landau damping rate.Comment: 22 pages, 3 figure

    Similar works