research

Non-perturbative running of the average momentum of non-singlet parton densities

Abstract

We determine non-perturbatively the anomalous dimensions of the second moment of non-singlet parton densities from a continuum extrapolation of results computed in quenched lattice simulations at different lattice spacings. We use a Schr\"odinger functional scheme for the definition of the renormalization constant of the relevant twist-2 operator. In the region of renormalized couplings explored, we obtain a good description of our data in terms of a three-loop expression for the anomalous dimensions. The calculation can be used for exploring values of the coupling where a perturbative expansion of the anomalous dimensions is not valid a priori. Moreover, our results provide the non-perturbative renormalization constant that connects hadron matrix elements on the lattice, renormalized at a low scale, with the experimental results, renormalized at much higher energy scales.Comment: Latex2e file, 6 figures, 25 pages, Corrected errors on linear fit in table 2 and discussion on anomalous dimension of f_

    Similar works