research

Improving lattice perturbation theory

Abstract

Lepage and Mackenzie have shown that tadpole renormalization and systematic improvement of lattice perturbation theory can lead to much improved numerical results in lattice gauge theory. It is shown that lattice perturbation theory using the Cayley parametrization of unitary matrices gives a simple analytical approach to tadpole renormalization, and that the Cayley parametrization gives lattice gauge potentials gauge transformations close to the continuum form. For example, at the lowest order in perturbation theory, for SU(3) lattice gauge theory, at β=6,\beta=6, the `tadpole renormalized' coupling g~2=43g2,\tilde g^2 = {4\over 3} g^2, to be compared to the non-perturbative numerical value g~2=1.7g2.\tilde g^2 = 1.7 g^2.Comment: Plain TeX, 8 page

    Similar works