We present a canonical method where the properties of QCD are directly
obtained as a function of the baryon density rho, rather than the chemical
potential mu. We apply this method to the determination of the phase diagram of
four-flavor QCD. For a pion mass m_pi \sim 350 MeV, the first-order transition
between the hadronic and the plasma phase gives rise to a co-existence region
in the T-rho plane, which we study in detail, including the associated
interface tension. We obtain accurate results for systems containing up to 30
baryons and quark chemical potentials mu up to 2 T. Our T-mu phase diagram
agrees with the literature when mu/T \lesssim 1. At larger chemical potential,
we observe a ``bending down'' of the phase boundary. We compare the free energy
in the confined and deconfined phase with predictions from a hadron resonance
gas and from a free massless quark gas respectively.Comment: 6 pages, 9 figures, proceedings of "Workshop on Computational Hadron
Physics", Cyprus, Sept. 200