research

Spaces with torsion from embedding and the special role of autoparallel trajectories

Abstract

As a contribution to the ongoing discussion of trajectories of spinless particles in spaces with torsion we show that the geometry of such spaces can be induced by embedding their curves in a euclidean space without torsion. Technically speaking, we define the tangent (velocity) space of the embedded space imposing non-holonomic constraints upon the tangent space of the embedding space. Parallel transport in the embedded space is determined as an induced parallel transport on the surface of constraints. Gauss' principle of least constraint is used to show that autoparallels realize a constrained motion that has a minimal deviation from the free, unconstrained motion, this being a mathematical expression of the principle of inertia.Comment: LaTeX file in src, no figures. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Paper also at http://www.physik.fu-berlin.de/~kleinert/kleiner_re259/preprint.htm

    Similar works

    Available Versions

    Last time updated on 05/06/2019