The Barrab\`es-Israel theory of light-like shells in General Relativity is
used to show explicitly that in general a light-like shell is accompanied by an
impulsive gravitational wave. The gravitational wave is identified by its
Petrov Type N contribution to a Dirac delta-function term in the Weyl conformal
curvature tensor (with the delta-function singular on the null hypersurface
history of the wave and shell). An example is described in which an
asymptotically flat static vacuum Weyl space-time experiences a sudden change
across a null hypersurface in the multipole moments of its isolated axially
symmetric source. A light-like shell and an impulsive gravitational wave are
identified, both having the null hypersurface as history. The stress-energy in
the shell is dominated (at large distance from the source) by the jump in the
monopole moment (the mass) of the source with the jump in the quadrupole moment
mainly responsible for the stress being anisotropic. The gravitational wave
owes its existence principally to the jump in the quadrupole moment of the
source confirming what would be expected.Comment: 26 pages, tex, no figures, to appear in Phys.Rev.