This paper develops a theory of thin shells within the context of the
Einstein-Cartan theory by extending the known formalism of general relativity.
In order to perform such an extension, we require the general non symmetric
stress-energy tensor to be conserved leading, as Cartan pointed out himself, to
a strong constraint relating curvature and torsion of spacetime. When we
restrict ourselves to the class of space-times satisfying this constraint, we
are able to properly describe thin shells and derive the general expression of
surface stress-energy tensor both in its four-dimensional and in its
three-dimensional intrinsic form. We finally derive a general family of static
solutions of the Einstein-Cartan theory exhibiting a natural family of null
hypersurfaces and use it to apply our formalism to the construction of a null
shell of matter.Comment: Latex, 21 pages, 1 combined Latex/Postscript figure; Accepted for
publication in Classical and Quantum Gravit