research

Differential Rigidity of Anosov Actions of Higher Rank Abelian Groups and Algebraic Lattice Actions

Abstract

We show that most homogeneous Anosov actions of higher rank Abelian groups are locally smoothly rigid (up to an automorphism). This result is the main part in the proof of local smooth rigidity for two very different types of algebraic actions of irreducible lattices in higher rank semisimple Lie groups: (i) the Anosov actions by automorphisms of tori and nil-manifolds, and (ii) the actions of cocompact lattices on Furstenberg boundaries, in particular, projective spaces. The main new technical ingredient in the proofs is the use of a proper "non-stationary" generalization of the classical theory of normal forms for local contractions.Comment: 28 pages, LaTe

    Similar works

    Full text

    thumbnail-image

    Available Versions