In this paper we consider the communication problem that involves
transmission of correlated sources over broadcast channels. We consider a
graph-based framework for this information transmission problem. The system
involves a source coding module and a channel coding module. In the source
coding module, the sources are efficiently mapped into a nearly semi-regular
bipartite graph, and in the channel coding module, the edges of this graph are
reliably transmitted over a broadcast channel. We consider nearly semi-regular
bipartite graphs as discrete interface between source coding and channel coding
in this multiterminal setting. We provide an information-theoretic
characterization of (1) the rate of exponential growth (as a function of the
number of channel uses) of the size of the bipartite graphs whose edges can be
reliably transmitted over a broadcast channel and (2) the rate of exponential
growth (as a function of the number of source samples) of the size of the
bipartite graphs which can reliably represent a pair of correlated sources to
be transmitted over a broadcast channel.Comment: 36 pages, 9 figure