We consider feed-forward neural networks with one hidden layer, tree
architecture and a fixed hidden-to-output Boolean function. Focusing on the
saturation limit of the storage problem the influence of replica symmetry
breaking on the distribution of local fields at the hidden units is
investigated. These field distributions determine the probability for finding a
specific activation pattern of the hidden units as well as the corresponding
correlation coefficients and therefore quantify the division of labor among the
hidden units. We find that although modifying the storage capacity and the
distribution of local fields markedly replica symmetry breaking has only a
minor effect on the correlation coefficients. Detailed numerical results are
provided for the PARITY, COMMITTEE and AND machines with K=3 hidden units and
nonoverlapping receptive fields.Comment: 9 pages, 3 figures, RevTex, accepted for publication in Phys. Rev.