We generalize the method of Van Hove so as to deal with the case of
non-ordinary statistical mechanics, that being phenomena with no time-scale
separation. We show that in the case of ordinary statistical mechanics, even if
the adoption of the Van Hove method imposes randomness upon Hamiltonian
dynamics, the resulting statistical process is described using normal calculus
techniques. On the other hand, in the case where there is no time-scale
separation, this generalized version of Van Hove's method not only imposes
randomness upon the microscopic dynamics, but it also transmits randomness to
the macroscopic level. As a result, the correct description of macroscopic
dynamics has to be expressed in terms of the fractional calculus.Comment: 20 pages, 1 figur