research

Suppressed Superconductivity of the Surface Conduction Layer in Bi2_2Sr2_2CaCu2_2O8+x_{8+x} Single Crystals Probed by {\it c}-Axis Tunneling Measurements

Abstract

We fabricated small-size stacks on the surface of Bi2_2Sr2_2CaCu2_2O8+x_{8+x} (BSCCO-2212) single crystals with the bulk transition temperature TcT_c≃\simeq90 K, each containing a few intrinsic Josephson junctions. Below a critical temperature Tcβ€²T_c' (β‰ͺ\ll TcT_c), we have observed a weakened Josephson coupling between the CuO2_2 superconducting double layer at the crystal surface and the adjacent one located deeper inside a stack. The quasiparticle branch in the IVIV data of the weakened Josephson junction (WJJ) fits well to the tunneling characteristics of a d-wave superconductor(β€²')/insulator/d-wave superconductor (Dβ€²'ID) junction. Also, the tunneling resistance in the range Tcβ€²T_c'<<TT<<TcT_c agrees well with the tunneling in a normal metal/insulator/d-wave superconductor (NID) junction. In spite of the suppressed superconductivity at the surface layer the symmetry of the order parameter appears to remain unaffected.Comment: 13 pages, 6 figure

    Similar works