The total energy E(t) in a fluid of inelastic particles is dissipated through
inelastic collisions. When such systems are prepared in a homogeneous initial
state and evolve undriven, E(t) decays initially as t^{-2} \aprox exp[ -
2\epsilon \tau] (known as Haff's law), where \tau is the average number of
collisions suffered by a particle within time t, and \epsilon=1-\alpha^2
measures the degree of inelasticity, with \alpha the coefficient of normal
restitution. This decay law is extended for large times to E(t) \aprox
\tau^{-d/2} in d-dimensions, far into the nonlinear clustering regime. The
theoretical predictions are quantitatively confirmed by computer simulations,
and holds for small to moderate inelasticities with 0.6< \alpha< 1.Comment: 7 pages, 4 PostScript figures. To be published in Europhysics Letter