Abstract

In the framework of a random matrix description of chaotic quantum scattering the positions of SS-matrix poles are given by complex eigenvalues ZiZ_i of an effective non-Hermitian random-matrix Hamiltonian. We put forward a conjecture on statistics of ZiZ_i for systems with broken time-reversal invariance and verify that it allows to reproduce statistical characteristics of Wigner time delays known from independent calculations. We analyze the ensuing two-point statistical measures as e.g. spectral form factor and the number variance. In addition we find the density of complex eigenvalues of real asymmetric matrices generalizing the recent result by Efetov\cite{Efnh}.Comment: 4 page

    Similar works

    Full text

    thumbnail-image

    Available Versions