We discuss the concept of discrete scale invariance and how it leads to
complex critical exponents (or dimensions), i.e. to the log-periodic
corrections to scaling. After their initial suggestion as formal solutions of
renormalization group equations in the seventies, complex exponents have been
studied in the eighties in relation to various problems of physics embedded in
hierarchical systems. Only recently has it been realized that discrete scale
invariance and its associated complex exponents may appear ``spontaneously'' in
euclidean systems, i.e. without the need for a pre-existing hierarchy. Examples
are diffusion-limited-aggregation clusters, rupture in heterogeneous systems,
earthquakes, animals (a generalization of percolation) among many other
systems. We review the known mechanisms for the spontaneous generation of
discrete scale invariance and provide an extensive list of situations where
complex exponents have been found. This is done in order to provide a basis for
a better fundamental understanding of discrete scale invariance. The main
motivation to study discrete scale invariance and its signatures is that it
provides new insights in the underlying mechanisms of scale invariance. It may
also be very interesting for prediction purposes.Comment: significantly extended version (Oct. 27, 1998) with new examples in
several domains of the review paper with the same title published in Physics
Reports 297, 239-270 (1998