We consider two perturbative schemes to calculate excitation energies, each
employing the Kohn-Sham Hamiltonian as the unperturbed system. Using accurate
exchange-correlation potentials generated from essentially exact densities and
their exchange components determined by a recently proposed method, we evaluate
energy differences between the ground state and excited states in first-order
perturbation theory for the Helium, ionized Lithium and Beryllium atoms. It was
recently observed that the zeroth-order excitations energies, simply given by
the difference of the Kohn-Sham eigenvalues, almost always lie between the
singlet and triplet experimental excitations energies, corrected for
relativistic and finite nuclear mass effects. The first-order corrections
provide about a factor of two improvement in one of the perturbative schemes
but not in the other. The excitation energies within perturbation theory are
compared to the excitations obtained within ΔSCF and time-dependent
density functional theory. We also calculate the excitation energies in
perturbation theory using approximate functionals such as the local density
approximation and the optimized effective potential method with and without the
Colle-Salvetti correlation contribution