Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

Abstract

Federal agencies that oversee land management for much of the Snake Range in eastern Nevada, including the management of Great Basin National Park by the National Park Service, need to understand the potential extent of adverse effects to federally managed lands from nearby groundwater development. As a result, this study was developed (1) to attain a better understanding of aquifers controlling groundwater flow on the eastern side of the southern part of the Snake Range and their connection with aquifers in the valleys, (2) to evaluate the relation between surface water and groundwater along the piedmont slopes, (3) to evaluate sources for Big Springs and Rowland Spring, and (4) to assess groundwater flow from southern Spring Valley into northern Hamlin Valley. The study focused on two areas—the first, a northern area along the east side of Great Basin National Park that included Baker, Lehman, and Snake Creeks, and a second southern area that is the potential source area for Big Springs. Data collected specifically for this study included the following: (1) geologic field mapping; (2) drilling, testing, and water quality sampling from 7 test wells; (3) measuring discharge and water chemistry of selected creeks and springs; (4) measuring streambed hydraulic gradients and seepage rates from 18 shallow piezometers installed into the creeks; and (5) monitoring stream temperature along selected reaches to identify places of groundwater inflow. The Snake Range was formed by a generally normal-faulted uplift, where late Proterozoic and Cambrian siliciclastic rocks and metamorphic rocks are present at the highest altitudes and younger Paleozoic carbonate rocks are exposed along the flanks. The consolidated rocks are intruded by Jurassic to Tertiary age plutons, which are most common between the Lehman and Snake Creek drainage basins. Older Cenozoic rocks, including Oligocene volcanic rocks and Miocene sedimentary rocks, crop out locally and fill the basins that underlie Snake, Spring, and Hamlin Valleys. Younger Terti

    Similar works