Compact and accurate wave functions can be constructed by quantum Monte Carlo
methods. Typically, these wave functions consist of a sum of a small number of
Slater determinants multiplied by a Jastrow factor. In this paper we study the
importance of including high-order, nucleus-three-electron correlations in the
Jastrow factor. An efficient algorithm based on the theory of invariants is
used to compute the high-body correlations. We observe significant improvements
in the variational Monte Carlo energy and in the fluctuations of the local
energies but not in the fixed-node diffusion Monte Carlo energies. Improvements
for the ground states of physical, fermionic atoms are found to be smaller than
those for the ground states of fictitious, bosonic atoms, indicating that
errors in the nodal surfaces of the fermionic wave functions are a limiting
factor.Comment: 9 pages, no figures, Late