Granular gaseous mixtures under rapid flow conditions are usually modeled by
a multicomponent system of smooth inelastic hard spheres with constant
coefficients of normal restitution. In the low density regime an adequate
framework is provided by the set of coupled inelastic Boltzmann equations. Due
to the intricacy of the inelastic Boltzmann collision operator, in this paper
we propose a simpler model of elastic hard spheres subject to the action of an
effective drag force, which mimics the effect of dissipation present in the
original granular gas. The Navier--Stokes transport coefficients for a binary
mixture are obtained from the model by application of the Chapman--Enskog
method. The three coefficients associated with the mass flux are the same as
those obtained from the inelastic Boltzmann equation, while the remaining four
transport coefficients show a general good agreement, especially in the case of
the thermal conductivity. Finally, the approximate decomposition of the
inelastic Boltzmann collision operator is exploited to construct a model
kinetic equation for granular mixtures as a direct extension of a known kinetic
model for elastic collisions.Comment: The title has been changed, 4 figures, and to be published in Phys.
Rev.