research

Pumping Current in a Quantum Dot by an Oscillating Magnetic Field

Abstract

We investigate spin and charge current through a quantum dot pumped by a time-varying magnetic field. Using the density matrix method, quantum rate equations for the electronic occupation numbers in the quantum dot are obtained and solved in the stationary state limit for a wide set of setup parameters. Both charge and spin current are expressed explicitly in terms of several relevant parameters and analyzed in detail. The results suggest a way of optimizing experimental setup parameters to obtain an maximal spin current without the charge current flow.Comment: to appear in the proceedings of the international conference on frontiers in nonlinear and complex systems as a special issue in the International Journal of Modern Physics B, vol. 21

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019