We report the experimental confirmation of the collective transverse plasma
modes excited by the Josephson vortex lattice in stacks of intrinsic Josephson
junctions in Bi2Sr2CaCu2O8+x single crystals. The
excitation was confirmed by analyzing the temperature (T) and magnetic field
(H) dependencies of the multiple sub-branches in the Josephson-vortex-flow
region of the current-voltage characteristics of the system. In the near-static
Josephson vortex state for a low tunneling bias current, pronounced
magnetoresistance oscillations were observed, which represented a
triangular-lattice vortex configuration along the c axis. In the dynamic vortex
state in a sufficiently high magnetic field and for a high bias current,
splitting of a single Josephson vortex-flow branch into multiple sub-branches
was observed. Detailed examination of the sub-branches for varying H field
reveals that sub-branches represent the different modes of the Josephson-vortex
lattice along the c axis, with varied configuration from a triangular to a
rectangular lattices. These multiple sub-branches merge to a single curve at a
characteristic temperature, above which no dynamical structural transitions of
the Josephson vortex lattice is expected