We investigate freezing characteristics of a finite dipolar hexagonal plate
by the Monte Carlo simulation. The hexagonal plate is cut out from a piled
triangular lattice of three layers with FCC-like (ABCABC) stacking structure.
In the present study an annealing simulation is performed for the dipolar plate
uniaxially compressed in the direction of layer-piling. We find spin melting
and refreezing driven by the uniaxial compression. Each of the melting and
refreezing corresponds one-to-one with a change of the ground states induced by
compression. The freezing temperatures of the ground-state orders differ
significantly from each other, which gives rise to the spin melting and
refreezing of the present interest. We argue that these phenomena are
originated by a finite size effect combined with peculiar anisotropic nature of
the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference.
To appear in a special issue of J. Phys. Condens. Matte