We use fiber-coupled photoconductive emitters and detectors to perform
terahertz (THz) spectroscopy of lightly-doped n-InSb directly in the cryogenic
(1.5 K) bore of a high-field superconducting magnet. We measure transmission
spectra from 0.1-1.1 THz as the sample is driven through a metal-insulator
transition (MIT) by applied magnetic field. In the low-field metallic state,
the data directly reveal the plasma edge and magneto-plasmon modes. With
increasing field, a surprisingly broad band (0.3-0.8 THz) of low transmission
appears at the onset of the MIT. This band subsequently collapses and evolves
into the sharp 1s -> 2p- transition of electrons `frozen' onto isolated donors
in the insulating state.Comment: 4 pages, 3 figure