Inhomogeneous substructures hidden in random networks


We study the structure of the load-based spanning tree (LST) that carries the maximum weight of the Erdos-Renyi (ER) random network. The weight of an edge is given by the edge-betweenness centrality, the effective number of shortest paths through the edge. We find that the LSTs present very inhomogeneous structures in contrast to the homogeneous structures of the original networks. Moreover, it turns out that the structure of the LST changes dramatically as the edge density of an ER network increases, from scale free with a cutoff, scale free, to a starlike topology. These would not be possible if the weights are randomly distributed, which implies that topology of the shortest path is correlated in spite of the homogeneous topology of the random network.Comment: 4 pages, 4 figure

    Similar works

    Full text


    Available Versions

    Last time updated on 01/04/2019