We study a possible mechanism of the switching of the magnetic easy axis as a
function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial
magnetic anisotropy along [110] is found to exceed intrinsic cubic
magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21
cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth
annealing, and the temperature-dependent ac susceptibility is significantly
changed with increasing annealing time. On the basis of our recent scenario
[Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we
deduce that the growth of highly hole-concentrated cluster regions with [110]
uniaxial anisotropy is likely the predominant cause of the enhancement in [110]
uniaxial anisotropy at the high hole concentration regime. We can clearly rule
out anisotropic lattice strain as a possible origin of the switching of the
magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.