We study the noise-induced currents and reliability or coherence of transport
in two different classes of rocking ratchets. For this, we consider the motion
of Brownian particles in the over damped limit in both adiabatic and
non-adiabatic regimes subjected to unbiased temporally symmetric and asymmetric
periodic driving force. In the case of a time symmetric driving, we find that
even in the presence of a spatially symmetric simple sinusoidal potential,
highly coherent transport occurs. These ratchet systems exhibit giant coherence
of transport in the regime of parameter space where unidirectional currents in
the deterministic case are observed. Outside this parameter range, i.e., when
current vanishes in the deterministic regime, coherence in transport is very
low. The transport coherence decreases as a function of temperature and is a
non-monotonic function of the amplitude of driving. The transport becomes
unreliable as we go from the adiabatic to the non-adiabatic domain of
operation.Comment: 15 pages, 9 figures, replaced by the version to appear in JSTA