The use of parity-check gates in information theory has proved to be very
efficient. In particular, error correcting codes based on parity checks over
low-density graphs show excellent performances. Another basic issue of
information theory, namely data compression, can be addressed in a similar way
by a kind of dual approach. The theoretical performance of such a Parity Source
Coder can attain the optimal limit predicted by the general rate-distortion
theory. However, in order to turn this approach into an efficient compression
code (with fast encoding/decoding algorithms) one must depart from parity
checks and use some general random gates. By taking advantage of analytical
approaches from the statistical physics of disordered systems and SP-like
message passing algorithms, we construct a compressor based on low-density
non-linear gates with a very good theoretical and practical performance.Comment: 13 pages, European Conference on Complex Systems, Paris (Nov 2005