We study the Hamiltonian dynamics of a free particle injected onto a chain
containing a periodic array of harmonic oscillators in thermal equilibrium. The
particle interacts locally with each oscillator, with an interaction that is
linear in the oscillator coordinate and independent of the particle's position
when it is within a finite interaction range. At long times the particle
exhibits diffusive motion, with an ensemble averaged mean-squared displacement
that is linear in time. The diffusion constant at high temperatures follows a
power law D ~ T^{5/2} for all parameter values studied. At low temperatures
particle motion changes to a hopping process in which the particle is bound for
considerable periods of time to a single oscillator before it is able to escape
and explore the rest of the chain. A different power law, D ~ T^{3/4}, emerges
in this limit. A thermal distribution of particles exhibits thermally activated
diffusion at low temperatures as a result of classically self-trapped polaronic
states.Comment: 15 pages, 4 figures Submitted to Physical Review