Kimelfeld and Sagiv [Kimelfeld and Sagiv, PODS 2006], [Kimelfeld and Sagiv,
Inf. Syst. 2008] pointed out the problem of enumerating K-fragments is of
great importance in a keyword search on data graphs. In a graph-theoretic term,
the problem corresponds to enumerating minimal Steiner trees in (directed)
graphs. In this paper, we propose a linear-delay and polynomial-space algorithm
for enumerating all minimal Steiner trees, improving on a previous result in
[Kimelfeld and Sagiv, Inf. Syst. 2008]. Our enumeration algorithm can be
extended to other Steiner problems, such as minimal Steiner forests, minimal
terminal Steiner trees, and minimal directed Steiner trees. As another variant
of the minimal Steiner tree enumeration problem, we study the problem of
enumerating minimal induced Steiner subgraphs. We propose a polynomial-delay
and exponential-space enumeration algorithm of minimal induced Steiner
subgraphs on claw-free graphs. Contrary to these tractable results, we show
that the problem of enumerating minimal group Steiner trees is at least as hard
as the minimal transversal enumeration problem on hypergraphs