We perform a laboratory-scale experiment of submarine avalanches on a rough
inclined plane. A sediment layer is prepared and thereafter tilted up to an
angle lower than the spontaneous avalanche angle. The sediment is scrapped
until an avalanche is triggered. Based on the stability diagram of the sediment
layer, we investigate different structures for the avalanche front dynamics.
First we see a straight front descending the slope, and then a transverse
instability occurs. Eventually, a fingering instability shows up similar to
rivulets appearing for a viscous fluid flowing down an incline. The mechanisms
leading to this new instability and the wavelength selection are discussed.Comment: 4 pages, 6 figures, to appear in the proceedings of Powders and
Grains 200