We derive a general theory for imaging by a flat lens without optical axis.
We show that the condition for imaging requires a material having elliptic
dispersion relations with negative group refraction, equivalent to an effective
anisotropic refractive index n(theta). Imaging can be achieved with both
negative (n0) refractive indices. The Veselago-Pendry lens
is a special case with isotropic negative refractive index of n(theta)=-1.
Realizations of the imaging conditions using anisotropic media and
inhomogeneous media, particularly photonic crystals, are discussed. Numerical
examples of imaging and requirements for sub-wavelength imaging are also
presented.Comment: 5 pages, 4 figure