Although the ``scale-free'' literature is large and growing, it gives neither
a precise definition of scale-free graphs nor rigorous proofs of many of their
claimed properties. In fact, it is easily shown that the existing theory has
many inherent contradictions and verifiably false claims. In this paper, we
propose a new, mathematically precise, and structural definition of the extent
to which a graph is scale-free, and prove a series of results that recover many
of the claimed properties while suggesting the potential for a rich and
interesting theory. With this definition, scale-free (or its opposite,
scale-rich) is closely related to other structural graph properties such as
various notions of self-similarity (or respectively, self-dissimilarity).
Scale-free graphs are also shown to be the likely outcome of random
construction processes, consistent with the heuristic definitions implicit in
existing random graph approaches. Our approach clarifies much of the confusion
surrounding the sensational qualitative claims in the scale-free literature,
and offers rigorous and quantitative alternatives.Comment: 44 pages, 16 figures. The primary version is to appear in Internet
Mathematics (2005