research

Quantum phase transitions in alternating transverse Ising chains

Abstract

This chapter is devoted to a discussion of quantum phase transitions in regularly alternating spin-1/2 Ising chain in a transverse field. After recalling some generally-known topics of the classical (temperature-driven) phase transition theory and some basic concepts of the quantum phase transition theory I pass to the statistical mechanics calculations for a one-dimensional spin-1/2 Ising model in a transverse field, which is the simplest possible system exhibiting the continuous quantum phase transition. The essential tool for these calculations is the Jordan-Wigner fermionization. The latter technique being completed by the continued fraction approach permits to obtain analytically the thermodynamic quantities for a `slightly complicated' model in which the intersite exchange interactions and on-site fields vary regularly along a chain. Rigorous analytical results for the ground-state and thermodynamic quantities, as well as exact numerical data for the spin correlations computed for long chains (up to a few thousand sites) demonstrate how the regularly alternating bonds/fields effect the quantum phase transition. I discuss in detail the case of period 2, swiftly sketch the case of period 3 and finally summarize emphasizing the effects of periodically modulated Hamiltonian parameters on quantum phase transitions in the transverse Ising chain and in some related models.Comment: 37 pages, 7 figures, talk at the "Ising lectures" (ICMP, L'viv, March 2002

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019