research

Quantum Monte Carlo simulation of a two-dimensional Bose gas

Abstract

The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite-ranged and strictly repulsive and zero-ranged supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gas-like state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.Comment: 6 pages, 5 figures, 1 tabl

    Similar works