We report a study of spin-waves in ferromagnetic La1โxโCaxโMnO3โ,
at concentrations x=0.17 and x=0.2 very close to the metallic transition
(x=0.225). Below TCโ, in the quasi-metallic state (T=150K), nearly
q-independent energy levels are observed. They are characteristic of standing
spin waves confined into finite-size ferromagnetic domains, defined in {\bf a,
b) plane for x=0.17 and in all q-directions for x=0.2. They allow an estimation
of the domain size, a few lattice spacings, and of the magnetic coupling
constants inside the domains. These constants, anisotropic, are typical of an
orbital-ordered state, allowing to characterize the domains as "hole-poor". The
precursor state of the CMR metallic phase appears, therefore, as an assembly of
small orbital-ordered domains.Comment: 4 pages, 5 figure