Substances such as the ``telephone number compound''
Sr14Cu24O41 are intrinsically hole-doped. The involved interplay of spin and
charge dynamics is a challenge for theory. In this article we propose to
describe hole-doped Heisenberg spin rings by means of complete numerical
diagonalization of a Heisenberg Hamiltonian that depends parametrically on hole
positions and includes the screened Coulomb interaction among the holes. It is
demonstrated that key observables like magnetic susceptibility, specific heat,
and inelastic neutron scattering cross section depend sensitively on the
dielectric constant of the screened Coulomb potential.Comment: 5 pages, 6 figures, to be published in Eur. Phys. J.