research

Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap

Abstract

A two-dimensional rapidly rotating Bose-Einstein condensate in an anharmonic trap with quadratic and quartic radial confinement is studied analytically with the Thomas-Fermi approximation and numerically with the full time-independent Gross-Pitaevskii equation. The quartic trap potential allows the rotation speed Ω\Omega to exceed the radial harmonic frequency ω\omega_\perp. In the regime Ωω\Omega \gtrsim \omega_\perp, the condensate contains a dense vortex array (approximated as solid-body rotation for the analytical studies). At a critical angular velocity Ωh\Omega_h, a central hole appears in the condensate. Numerical studies confirm the predicted value of Ωh\Omega_h, even for interaction parameters that are not in the Thomas-Fermi limit. The behavior is also investigated at larger angular velocities, where the system is expected to undergo a transition to a giant vortex (with pure irrotational flow).Comment: 14 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020