Density matrix renormalization group methods are used to investigate the
quantum phase diagram of a one-dimensional half-filled ionic Hubbard model with
bond-charge attraction, which can be mapped from the Su-Schrieffer-Heeger-type
electron-phonon coupling at the antiadiabatic limit. A bond order wave
(dimerized) phase which separates the band insulator from the Mott insulator
always exists as long as electron-phonon coupling is present. This is
qualitatively different from that at the adiabatic limit. Our results indicate
that electron-electron interaction, ionic potential and quantum phonon
fluctuations combine in the formation of the bond-order wave phase