research

Liquid crystalline states for two-dimensional electrons in strong magnetic fields

Abstract

Based on the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) theory of two-dimensional melting and the analogy between Laughlin states and the two-dimensional one-component plasma (2DOCP), we investigate the possibility of liquid crystalline states in a single Landau level (LL). We introduce many-body trial wavefunctions that are translationally invariant but posess 2-fold (i.e. {\em nematic}), 4-fold ({\em tetratic}) or 6-fold ({\em hexatic}) broken rotational symmetry at respective filling factors ν=1/3\nu = 1/3, 1/5 and 1/7 of the valence LL. We find that the above liquid crystalline states exhibit a soft charge density wave (CDW) which underlies the translationally invariant state but which is destroyed by quantum fluctuations. By means of Monte Carlo (MC) simulations, we determine that, for a considerable variety of interaction potentials, the anisotropic states are energetically unfavorable for the lowest and first excited LL's (with index L=0,1L = 0, 1), whereas the nematic is favorable at the second excited LL (L=2L = 2).Comment: 7 figures, submitted to PRB, high-quality figures available upon reques

    Similar works