The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th