research

The q-component static model : modeling social networks

Abstract

We generalize the static model by assigning a q-component weight on each vertex. We first choose a component (μ)(\mu) among the q components at random and a pair of vertices is linked with a color μ\mu according to their weights of the component (μ)(\mu) as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q+1)-th color as in the static model but using the maximum weights among the q components each individual has. This model is motivated by social networks. It exhibits similar topological features to real social networks in that: (i) the degree distribution has a highly skewed form, (ii) the diameter is as small as and (iii) the assortativity coefficient r is as positive and large as those in real social networks with r reaching a maximum around f≈0.2f \approx 0.2.Comment: 5 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019