The rencontre problem

Abstract

Let {Xk1}k=1,{Xk2}k=1,,{Xkd}k=1\left\{X^{1}_k\right\}_{k=1}^{\infty}, \left\{X^{2}_k\right\}_{k=1}^{\infty}, \cdots, \left\{X^{d}_k\right\}_{k=1}^{\infty} be dd independent sequences of Bernoulli random variables with success-parameters p1,p2,,pdp_1, p_2, \cdots, p_d respectively, where d2d \geq 2 is a positive integer, and 0<pj<1 0<p_j<1 for all j=1,2,,d.j=1,2,\cdots,d. Let \begin{equation*} S^{j}(n) = \sum_{i=1}^{n} X^{j}_{i} = X^{j}_{1} + X^{j}_{2} + \cdots + X^{j}_{n}, \quad n =1,2 , \cdots. \end{equation*} We declare a "rencontre" at time nn, or, equivalently, say that nn is a "rencontre-time," if \begin{equation*} S^{1}(n) = S^{2}(n) = \cdots = S^{d}(n). \end{equation*} We motivate and study the distribution of the first (provided it is finite) rencontre time.Comment: 40 pages, 1 tabl

    Similar works

    Full text

    thumbnail-image

    Available Versions