Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations

Abstract

The SOR-like iteration method for solving the absolute value equations~(AVE) of finding a vector xx such that Axβˆ’βˆ£xβˆ£βˆ’b=0Ax - |x| - b = 0 with Ξ½=βˆ₯Aβˆ’1βˆ₯2<1\nu = \|A^{-1}\|_2 < 1 is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma ([{\em Appl. Math. Comput.}, 311:195--202, 2017]) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes βˆ₯TΞ½(Ο‰)βˆ₯2\|T_\nu(\omega)\|_2 with TΞ½(Ο‰)=(∣1βˆ’Ο‰βˆ£Ο‰2ν∣1βˆ’Ο‰βˆ£βˆ£1βˆ’Ο‰βˆ£+Ο‰2Ξ½)T_\nu(\omega) = \left(\begin{array}{cc} |1-\omega| & \omega^2\nu \\ |1-\omega| & |1-\omega| +\omega^2\nu \end{array}\right) and the approximate optimal parameter which minimizes Ξ·Ξ½(Ο‰)=max⁑{∣1βˆ’Ο‰βˆ£,Ξ½Ο‰2}\eta_{\nu}(\omega) =\max\{|1-\omega|,\nu\omega^2\} are explored. The optimal and approximate optimal parameters are iteration-independent and the bigger value of Ξ½\nu is, the smaller convergent region of the iteration parameter Ο‰\omega is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo, Wu and Li ([{\em Appl. Math. Lett.}, 97:107--113, 2019]). In some situation, the SOR-like itration method with the optimal parameter performs better, in terms of CPU time, than the generalized Newton method (Mangasarian, [{\em Optim. Lett.}, 3:101--108, 2009]) for solving the AVE.Comment: 23 pages, 7 figures, 7 table

    Similar works

    Full text

    thumbnail-image

    Available Versions