research

Magnetic and superconducting instabilities in the periodic Anderson model: an RPA stud

Abstract

We study the magnetic and superconducting instabilities of the periodic Anderson model with infinite Coulomb repulsion U in the random phase approximation. The Neel temperature and the superconducting critical temperature are obtained as functions of electronic density (chemical pressure) and hybridization V (pressure). It is found that close to the region where the system exhibits magnetic order the critical temperature T_c is much smaller than the Neel temperature, in qualitative agreement with some T_N/T_c ratios found for some heavy-fermion materials. In our study, all the magnetic and superconducting physical behaviour of the system has its origin in the fluctuating boson fields implementing the infinite on-site Coulomb repulsion among the f-electrons.Comment: 9 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019