Inspired by the exact solution of the Majumdar-Ghosh model, a family of
one-dimensional, translationally invariant spin hamiltonians is constructed.
The exchange coupling in these models is antiferromagnetic, and decreases
linearly with the separation between the spins. The coupling becomes
identically zero beyond a certain distance. It is rigorously proved that the
dimer configuration is an exact, superstable ground state configuration of all
the members of the family on a periodic chain. The ground state is two-fold
degenerate, and there exists an energy gap above the ground state. The
Majumdar-Ghosh hamiltonian with two-fold degenerate dimer ground state is just
the first member of the family.
The scheme of construction is generalized to two and three dimensions, and
illustrated with the help of some concrete examples. The first member in two
dimensions is the Shastry-Sutherland model. Many of these models have
exponentially degenerate, exact dimer ground states.Comment: 10 pages, 8 figures, revtex, to appear in Phys. Rev.