We proposed a model of Quantum Cable in analogy to the recently synthesized
coaxial nanocable structure [Suenaga et al. Science, 278, 653 (1997); Zhang et
al. ibid, 281, 973 (1998)], and studied its single-electron subband structure.
Our results show that the subband spectrum of Quantum Cable is different from
either double-quantum-wire (DQW) structure in two-dimensional electron gas
(2DEG) or single quantum cylinder. Besides the double degeneracy of subbands
arisen from the non-abelian mirrow reflection symmetry, interesting
quasicrossings (accidental degeneracies), anticrossings and bundlings of
Quantum Cable energy subbands are observed for some structure parameters. In
the extreme limit (barrier width tends to infinity), the normal degeneracy of
subbands different from the DQW structure is independent on the other structure
parameters.Comment: 12 pages, 9 figure