“A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Recommender systems are an advanced form of software applications, more specifically
decision-support systems, that efficiently assist the users in finding items of their interest.
Recommender systems have been applied to many domains from music to e-commerce,
movies to software services delivery and tourism to news by exploiting available information
to predict and provide recommendations to end user. The suggestions generated by recommender
systems tend to narrow down the list of items which a user may overlook due to the
huge variety of similar items or users’ lack of experience in the particular domain of interest.
While the performance of traditional recommender systems, which rely on relatively simpler
information such as content and users’ filters, is widely accepted, their predictive capability
perfomrs poorly when local context of the user and situated actions have significant role in the
final decision. Therefore, acceptance and incorporation of context of the user as a significant
feature and development of recommender systems utilising the premise becomes an active
area of research requiring further investigation of the underlying algorithms and methodology.
This thesis focuses on categorisation of contextual and non-contextual features within
the domain of context-aware recommender system and their respective evaluation. Further,
application of the Multilayer Perceptron Model (MLP) for generating predictions and ratings
from the contextual and non-contextual features for contextual recommendations is presented
with support from relevant literature and empirical evaluation. An evaluation of specifically
employing artificial neural networks (ANNs) in the proposed methodology is also presented.
The work emphasizes on both algorithms and methodology with three points of consideration:\ud
contextual features and ratings of particular items/movies are exploited in several representations
to improve the accuracy of recommendation process using artificial neural networks
(ANNs), context features are combined with user-features to further improve the accuracy of
a context-aware recommender system and lastly, a combination of the item/movie features
are investigated within the recommendation process. The proposed approach is evaluated on
the LDOS-CoMoDa dataset and the results are compared with state-of-the-art approaches
from relevant published literature